Stuff you need to know from Precalculus

Unit Circle

For any ordered pair on the unit circle $(x, y): \cos \theta=x$ and $\sin \theta=y$

Trig Identities

$\sec x=\frac{1}{\cos x} \quad \csc x=\frac{1}{\sin x} \quad \cot x=\frac{1}{\tan x}$
$\tan x=\frac{\sin x}{\cos x} \quad \cot x=\frac{\cos x}{\sin x}$
$\cos ^{2} x+\sin ^{2} x=1$
$1+\tan ^{2} x=\sec ^{2} x$
$1+\cot ^{2} x=\csc ^{2} x$
$\sin (2 x)=2 \sin x \cos x$
$\cos (2 x)=\cos ^{2} x-\sin ^{2} x$
$\cos ^{2} x=\frac{1}{2}(1+\cos 2 x)$
$\sin ^{2} x=\frac{1}{2}(1-\cos 2 x)$

Equations of lines

Slope-Intercept form $y=m x+b$
Point-Slope form $\quad y-y_{1}=m\left(x-x_{1}\right)$
Normal line is perpendicular to tangent line

Radicals

If $x^{2}=a$, then $x= \pm \sqrt{a}$

Even and Odd Functions

If $f(-x)=f(x)$, then f is an even function
If $f(-x)=-f(x)$, then f is an odd functions

Exponents
$a^{0}=1, a \neq 0$
$a^{1}=a$
$a^{m} \cdot a^{n}=a^{m+n}$
$\frac{a^{m}}{a^{n}}=a^{m-n}$
$\left(a^{m}\right)^{n}=a^{m n}$
$a^{-m}=\frac{1}{a^{m}}, a \neq 0$
$a^{\frac{m}{n}}=\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m}$
$e^{\ln x}=x=\ln e^{x}$

Logarithms

$\ln 1=0$
$\ln e=1$
$\ln m n=\ln m+\ln n$
$\ln \frac{m}{n}=\ln m-\ln n$
$\ln m^{n}=n \ln m$
$\log _{b} x=\frac{\ln x}{\ln a}$

Conversion formula:

$$
\begin{gathered}
\log _{b} x=y \\
\Leftrightarrow \\
b^{y}=x
\end{gathered}
$$

Geometric Formulas

Triangle $\quad A=\frac{1}{2} b h$
Equilateral Triangle $\quad A=\frac{\sqrt{3}}{4} s^{2}$
Circle

$$
A=\pi r^{2}, C=2 \pi r
$$

Sphere
$V=\frac{4}{3} \pi r^{3}, S A=4 \pi r^{2}$
Cylinder

$$
V=\pi r^{2} h
$$

Cone

$$
V=\frac{\pi}{3} r^{2} h
$$

